
In' J. Solid, St'uctu", Vol I~. '10. 9. pp. '9:<-811. 1981
Pnnted in Great Britain. .

OO:l'-7bll3ISJ \1.00'.00
t 19t1) Per@lmon Press lid

VARIATION AL ESTIMATES FOR DISPERSION AND
ATTEND ATION OF WAVES IN RANDOM COMPOSITES-III

FIBRE-REINFORCED MATERIALS

D. R. S. TALBOT and J. R. WILLIS
School of Mathematics, Bath Cniversity. Bath BA2 7AY. England

(Received I June 1982; in wised form 9 December 1982)

Abslrad-The variational approach developed in Parts I and II is applied to some two-dimensional problems
of waves propagating transversely to the fibres in a unidirectional fibre-reinforced composite. Estimates of
wave speeds (both bounds and self-consistent estimates) and associated estimates for the attenuation of the
mean wave are given for long waves. They are studied in detail for the case of SH waves propagating
through materials reinforced by aligned elliptic cylinders. All of the results are sensitive to the statistics of
the medium. This is illustrated by considering two distinct pair distribution functions. Simple closed·form
expressions are given for the limiting cases of a body weakened by aligned cracks and a body strengthened
by aligned rigid plales. By·products of the analysis include a new representation for the two-dimensional
dynamic Green's function for an anisotropic medium and an expression in the Rayleigh limit for the
scattering cross-section of a single elliptic cylinder in a uniform matrix. both of which may be anisotropic.

l. INTRODUCTION

In a previous paper, Talbot and WiIlis[l] presented a general study of waves in randomly
inhomogeneous, and possibly anisotropic, elastic media. starting from a variational principle [2]
that was associated with a set of operator equations for stress and momentum polarizations,
first given in [3,4]. Specifically, for a medium with constitutive relations

(1 = Le. p = pu, (1.1)

where (1, e denote stress and strain, p, Ii denote momentum density and particle velocity and
L, P denote tensor of elastic moduli and mass density, stress and momentum polarizations 7, 1T

are defined so that

T =(L - Lo)e, 1T =(p - Po)u, 0.2)

relative to a comparison body with moduli Lo and density Po. Then, as shown in[3.4], T,1T

satisfy the operator equations

(L - LO)-1 7 + Sx7 + Mx1T = eo,

(p - PO)-I'/T + SIT + Mr1T = Uo, (1.3)

where eo, Uo represent the strain and velocity fields that the given boundary and initial
conditions would induce in the comparison body. The operators S" etc. are obtained from the
Green's function for the comparison body. It was shown in[2] that eqns (1.3) imply a variational
principle that reduces to the principle of Hashin and Shtrikman[5] in the static limit, and an
extension was noted, which generated the hierarchy of equations which follow from (1.3) where
L, p are random fields. In particular, for an n-phase medium in which L, p take the values L" Pr
in phase r, so that

n n

L =~ Lrfr(x), p = ~ Prfr(x),
r=1 r=l

(1.4)

where fr(x) is the indicator for the event "x E phase r", substitution of the simple trial fields

" n
T = ~ 'Tr(x, t)f.(x), 1T = ~ 1Tr(X, t)!r(x)

r=l r=t

793

(1.5)
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into the stochastic variational principle generated the equations

n

P,(L, - Lor 11, +~ [S.(1,P,,) + M.(7l',P,,)) = P,eo,
,=1

in which

n

P,(p, - pori 71', +~ [Sr(1,P,,) +M.(7l',P,,)) =P,Uo.
,=1

P,(x) =<f,(X)}, P,,(X', x) =<f,(X/)f,(X)}.

(1.6)

(1.7)

Equations (1.7) define one- and two-point probabilites for the medium. Relative to the
variational principle, eqns (1.6) make optimal use of this information, in the sense that
allowance for the configuration in any way more generally than in (1.5) would generate
equations involving probabilities of higher order. It is emphasised that (1.5) is not expected to
provide the exact field in any particular realization of the composite. It can, however, provide
precise bounds which involve only two point statistics, for the Laplace transform of the
variational operator, if applied to an initial value problem; this was shown in[2]. It is used, in
the present work, to estimate the dispersion relation for the mean wave, in the lOng-wavelength
limit. In this case, its status is less precise but it is not at present clear how it could be improved
upon, given only two-point statistics; it does, at least, have the virtue of providing, at lowest
order, estimates of Hashin-Shtrikman form for overall moduli, which are "best-possible" in
terms of two-point statistics.

Plane-wave solutions of (1.6) were discussed intI] and explicit formulae were derived, in the
form of integrals, for dispersion and attenuation coefficients in the limit of long waves. The
integrals were evaluated, and detailed results presented in[6], for a variety of composite media
which displayed overall isotropy. The present work is devoted to a corresponding study of
waves in composites containing a single family of long aligned fibres, when the waves travel
transversely to the fibres. The problem to be considered is thus a two-dimensional analogue of
that discussed inti] and the basic formulation is the same, apart from differences of detail
arising from the reduction in dimensionality. A new representation for the two-dimensional
Green's function, analogous to the three-dimensional representation given in[3], is developed in
Section 2. Then, in Section 3, eqns (1.3) are applied to the study of the scattering of plane
waves by a single fibre of elliptical cross-section, in the long-wavelength, or Rayleigh, limit.
Section 4 contains the basic equations describing the propagation of waves through a com­
posite, starting from (1.6); the resulting estimates for the dispersion and attenuation in the
Rayleigh limit are analogous to those given intI]. Section 5 specializes to a composite consisting
of a matrix containing a single population of identical fibres. This is specialized further in
Section 6 to the case in which the fibres have elliptical cross-section. For such a composite, the
long-wavelength wave speeds (or equivalently, the overall elastic moduli) can be estimated
explicitly, once the pair distribution function g(x) for the fibres is specified. Furthermore,
different choices of comparison material yield strict upper and lower bounds, and self­
consistent estimates. The bounds might be termed generalized Hashin-Shtrikman bounds, since
they are obtainable also from the form of the Hashin-Shtrikrnan variational principle given by
Willis[7], but they depend upon the shape of the fibres and upon the form taken for g(x),

reducing to the classical Hashin-Shtrikman bounds [8,9] in the case of transverse isotropy. The
term that defines dispersion contains a complicated integral of g(x) and is not considered in
detail. The attenuation term, however, allows for pair correlations through a simple factor /\..
together with a term which has the form of a scattering cross-section.

Finally, several results are presented for the propagation of SH waves. Bounds and
self-consistent estimates for long-wavelength wave speeds are displayed graphically, for a
variety of fibre cross-sections and for two choices of the pair distribution function. Associated
estimates for the attenuation are also given. The formulae reduce significantly in the cases of a
matrix reinforced by rigid plates, and a matrix weakened by aligned cracks. These results are
summarized, again for two choices of pair distribution function, in an Appendix.
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2. PRELIMINARIES

Although the present work follows the general pattern of[1], specialization to two-dimen­
sional problems introduces differences of detail which require discussion.

First, the tensor of elastic moduli L will be taken to depend upon XI' X2 only (corresponding
to fibres aligned in the 3-direction) and only waves propagating transversely to the 3-direction will
be considered. Thus, generally, the displacement u will depend upon X" X2, t only and the strain
component e33 = O.

As in[I], time-harmonic problems will be considered so that two-dimensional versions of the
time-reduced operators S, M are required. They are given by eqns (2.6), (2.7) of[l], with G
taking the appropriate two-dimensional form. It is, in fact, possible to deduce the two­
dimensional G from (3.11) of[I] by expressing the displacement field generated by a long (but
finite) line of body-force as an integral and taking a limit. It is easier, however, to proceed
directly, along a route which parallels the one that was followed by Willis [3] in producing the
three-dimensional G. Thus, for a uniform comparison material with moduli Lo and density Po,
the two-dimensional G satisfies the equation

(2.1)

where x is taken as the two-dimensional vector (x" X2) and LoW is the acoustic tensor for
waves propagating in the direction ~ = (~J, ~2), with components

(2.2)

the summation convention for Greek suffixes implying summation over the values 1,2 only. It
should be noted that the unit tensor I has components 8ij and, correspondingly, G has the nine
components Gij, though these depend only upon x" X2' Now from Gel'fand and ShiJov[IO], the
two-dimensional Dirac delta has the plane-wave representation

(2.3)

the integration extending around a unit circle in the ~-plane. This motivates study of the
problem

(2.4)

in which F may be taken as a function of ~. x only; this reduces (2.4) to the form

(2.5)

where p =~. x. The solution of (2.5) can be expressed in terms of the normalized eigenvectors
UNW and eigenvalues PoCN

2W of LoW. These satisfy

(2.6)

so that, when ~ is a unit vector, CN represents the speed with which a plane wave of
polarization UN travels in the direction €. The solution F of (2.5) can be given in the form

(2.7)

where

(2.8)
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The solution of (2.8) can be found by Fourier transforms. Elementary manipulation followed by
the superposition implied by (2.3) to generate G from F then gives the result

(2.9)

In contrast to (3.11) of [I], the representation (2.9) does not decompose directly into a static part
(w --.0) and a dynamic correction. The operator S, however, does: the components of its kernel
follow from (2.9), and (2.6) of[ I], as

S () I ~ i d utut~j { I TrW ( ) (. It II )pijX =p£., S 2 -~--2-sgn~.x eXplW.,.X CN
Tr N~l I~I~I POCN ., ..\ CN

+ W2 (t )Ixexp(-I{.xIZ)d:l\ ("110)--.,.sgn .,.x 2 2{ 1 ~.
CN- 0 Z + W CN- (ijl

where, as in [I], the suffix (ij) implies symmetrization on these indices. The other operators that
are needed follow correspondingly from their definitions. From (2.10) of [1].

W
2

IX exp(-I~·xlz)z dZll
-~ ,2 2 2

CI'; 0 ~ +W {eN lij~pql

and. from (2.7) and (2.11) of [I],

(2.11)

(2.12)

(2.13)

3 SINGLE SCATTERING IN THE RAYLEIGH LIMIT

Since no two-dimensional problems have yet been solved using the present formulation, it is
advantageous to consider first the problem of the scattering of a wave by a single inclusion
embedded in an infinite uniform matrix. The moduli and density of the matrix will be taken as
Lo, Po and those of the inclusion as Lh Pl' if the comparison medium is identified with the
matrix, the scattering is described by eqns (1.3), where uo now denotes the incident wave and
the polarizations 1, Tr are non-zero only over the region occupied by the inclusion. The field Uo

will be taken to have the plane-wave form

Uo = m exp[- i(knaxa +wt)], (3.1)

so that the unit normal n is orthogonal to the 3-axis and the polarization m and wavenumber k
satisfy

Once eqns (1.3) are solved, the total field follows as

U = uo+ r;

where the scattered field v is given by

v =- S1 - M71'.

(3.2)

(3.3)

(3.4)

Rather than finding t' explicitly, attention will be concentrated upon finding the scattering
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cross-section R of the inclusion. This is defined as the ratio of the mean rate of energy radiation
E associated with v to the mean energy flux F associated with uo. It was shown by Willis [3]
that

(3.5)

where D denotes the cross-section of the inclusion, while

(3.6)

the superscript * denoting complex conjugation. The cross-section was called Q in(3] but here
it is called R to avoid conflict with the notation in[I,6].

Equations (1.3) are difficult to solve in general but they simplify drastically in the Rayleigh
limit kd ... 0, where d denotes a dimension characteristic of the inclusion. In this limit, terms of
order ware neglected so that (1.3) reduce to

(3.7)

(3.8)

where l' is the static limit of the operator S" with kernel

(3.9)

and

(3.10)

The other operators, M., S,,, M, I are at least of order wand so do not appear. Equation (3.8)
gives 11' immediately, as the extra momentum associated with the inclusion being carried along
by the incident wave, while (3.7) characterizes 'T as the static polarization induced in an
inclusion in a matrix subjected to the uniform remote strain -;kEo.

A formal solution of (3.7) follows immediately if the inclusion has elliptical cross-section,
for then 'T may be taken constant over D. Application of roo to 'T in this case requires evaluation
of the integral

1 dx'
I(p) = Re ( c I 0')2'

D P -~.x - I
(3.11 )

when p = E.x. Inclusion of the term "0;" facilitates evaluation of the integral by elementary
means. Suppose first that the section D is a circular disc of radius a. Then I(p) can be reduced
by transforming to rectangular coordinates (p', q'). where p' =E.x', and integrating with respect
to q'. This gives

_ fa (a 2- p'2)112 dp'
I(p) - 2Re ( I 0')2

-a p - P - I

which can be evaluated by the method of Muskhelishvili(ll] to give

(3.12)

(3.13)
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Thus, in particular, when p ~.x and lxl<a, I(p): -27r and

0.14)

where P is a constant tensor with components

(3.15)

The general case of elliptical D: {x: xTATAx < I} can be reduced to the one just considered by
the dual transformations y :;: Ax, ~ : AT{. The result

'
A,--I' J i U NUN I

P .. : ~ ~ d ~~ f i ~i
pq/) £J S • r - t

27T N=\ I~I=I POCN ~ (A A) ~ (pq)(ij)
0.16)

was derived by Willis[12] by the alternate method of considering the limit of the corresponding
result for a long ellipsoid.

Thus, in the case of elliptical D eqn (3.7) can be replaced by the set of algebraic equations

0.17)

Inverting (3.17), therefore,

0.18)

Turning now to the evaluation of the cross-section R, (3.5) reveals the need to evaluate the
imaginary part of v and the real part of the associated strain, asymptotically as w ..... O. Since T, 7T
are imaginary, the real parts of S, M and the imaginary parts of Sx, M, are required. The
imaginary part of Sx and the real part of M are, respectively. W2~S,. w~M, where

0.19)

0.20)

asymptotically as w ..... O, from (2.11), (2.12) and (2.9). The operators S, M, do not, in fact,
contribute, since 7, 7T are constant and these operators have odd kernels. Hence. to lowest
order, for an ellipse with semi-axes a, b,

(3.21)

4. MULTIPLE SCATTERING

We now address the two-dimensional analogue of the problem studied in[1]. For an n-phase
random medium, substitution of the polarizations (1.5) into the variational principle of Willis [2J
and seeking a stationary point leads to the eqns (1.6). Planewave solutions are now sought. by
taking

7,(X, t):;: 7, exp[- i(kn"x" + wt)],

7T,(X, t) = 7T, exp[- i(knaxa+ wt)),

(4.1)

(4.2)

with uo: 0 and the probabilities P" Prs translation-invariant. The algebraic equations that define



Variational estimates for dispersion and attenuation of waves in random composites-III 799

the constants 7 r , 7l'r then take the form

Pr(Lr- Lof I 'Tr+i fdx' r(x')(p" - p.Pr)e -ikn .•· 7•
• =1

= Pr(e) - i fdx'(S. - Ij(p" - P,Pr)e-ikn .•·'T._ i Idx'M.(P.. - p.Pr)e -ikn"'1T., (4.3)
.=1 .-1

Pr(Pr - Pof 17l'r = - iwP,(u) + iw ±Idx' S(P" - p.p,) eikn .• ''T•
• -1

+ iw ±Idx' M(P.r- P,Pr)e-ilcn.x·7I'., (4.4)
1=1

where

(u) = - (.s.r + Mfr),

(e) = - (SxT + M.fr),

" n

f = ~ Pr'T" fr = ~ Pr7l',
,-1 ,~ I

(4.5)

(4.6)

(4.7)

and S represents the Fourier transform of the operator S, evaluated at (kn, w), with similar
definitions for the other operators; they are given explicitly in[l].

Proceeding now by perturbation theory, as in[l), consider the asymptotic form of (4.3), (4.4)
as w~o. The function P" - p.p, is assumed to decay to zero at a rate that defines a
characteristic microscopic dimension I. "Small w" is thus taken to be such that kl ~ I. Retaining
just 0(1) terms in (4.3), (4.4) gives

n

P,(L, - Lof 1'Tr+~ A,.'T, =Pr(e),.-1
P,(p, - Pof ' 7l'r = - iwP,(u),

where

Ars =Idx' J(x')(P,. - p,p.).

Equations (4.8) have the formal solution

n

'T, =~ TrsP.(e),.-1
giving rise to the approximate constitutive relation

(O') =L(e),

where

n n

i =Lo+~ ~ P,P.T,..
,-. s-I

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

It should be noted, however, that (eh3. O. Correspondingly, (4.13) defines all components of i
except [,3333' The estimate (4.13) can be obtained directly by employing the static variational
principle of Hashin and Shtrikman[5], as outlined in[7].
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Now consider the lowest-order perturbations to (4.8), (4.9), by making allowance for the
terms that have so far been neglected in (4.3), (4.4). Inspection of the equations shows that
these perturbations are of order w2

• Furthermore, since the term P" - p,p\ ensures con­
vergence of the integrals, the perturbations can be found from lowest,order estimates of the
relevant kernels. These follow trivially from their definitions, except for the term involving the
integral with respect to z. This can be estimated by a device introduced by Fraenkel (13] The
integrand is replaced by the uniform approximation

exp(-I~·xlz)z z exp(-I~.xl:)
i '/''-' 9 '/ ' +z'+W' C,....·' :'+w' CN' -

which reduces the integral. following an integration by parts, to the form

lXexp(-lfXIZ)ZdZ r I (wlfXI)]
, i i - - 'Y + n ,

o Z'+W'/CN' _ CN

(414)

(4.15)

where 'Y is Euler's constant. The logarithmic variation with W is counted as O( 1) so far as the
asymptotic approximation is concerned.

The perturbed equations now follow in much the same way as in[l]. They may be given in
the form

n

Pr(L, - LO):I T, +L A"T, = P,(e) + fro
5=1

P,(p, - pO)-I 7T, = - iwP,(U) + U"

where

n

- "" (k'A(kk) + 2A(wwl + " 2D )- + kB 7T]f., - - £..J rs W rs W rs' S W rs S ,

_~ = I

n

r, =L (wkB~sT, + (w'C" + iw 2
E,,)7Ts)·

5==\

The constants are as listed.

iwwl - 1 ~ 1 d ~gutu;"~1 .\' (~)l(A" )pqij -4~ £J S 4· '.\ c; .
7T N=I I<I~I POCN Ipq)(ljl

(kk») _ I ~ 1 d ~gu/ut~j ( ,.., )2.\, «(;)\(A" pqij -"'-"8_ £J S 1 n. v ~ , rs ., .. '
7T N=I 1<1=1 POCN ipq)(ljl

1 3 i U NUN
(C,,)pi =~4- L ds p 2 A~sW,

7T N =I I~I= 1 POCN

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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Ars = J(P,. - p,p.) dx', (4.27)

The constant Ars is directly analogous to A,. as given in[l], the integral now extending over
two-dimensional space. A~... on the other hand, is less simple. the term 8(~.x) that appeared in
the three-dimensional problem being replaced by the logarithmic term.

Equations (4.16), 4.17) can now be treated by perturbation theory exactly as in[I]. First, to
zeroth order, plane waves

(4.29)

are found by solving the equations

(4.30)

where the "overall acoustic tensor" L(n) is defined as in (2.2) and

(4.31)

is the mean density. The associated lowest-order polarizations 'TN, uN are then defined as the
solutions of (4.8), (4.9) with the right sides formed from (U)N' Then, finally, the perturbed
wavenumber, k =kN +8kN say, is obtained by solving (4.16), (4.17) by perturbation theory, to
give

where

k~ 1 Q' 'Q~k- - = +1,
N

(4.32)

_6)2 II II

Q== e - I I ['T,Drs'Ts+1l',E,s'/Ts]' (4.34)
mL(n)m ,=1,=1

In (4.33), (4.34), a suffix N is suppressed: it is to be understood that k, m, take the values kN, mN
and that 'Tn 1fr are the polarizations associated with them through (4.8), (4.9). The only
difference between these expressions and the corresponding formulae given in[t] is that Q is
now proportional to 6)2 rather than 6)3; and, of course, the constants A~~l, etc. are defined
differently.

5. A MATRIX·FIBRE COMPOSITE

For a matrix containing a single population of aligned fibres, denote the moduli and density
of the fibres by LJ, PI and those of the matrix by L2, P2' The formulae of the preceding section
simplify somewhat, upon use of the relations

These imply

SS Vol. 19. No. 9-0

PI+P2 = I, )

P1,+P2r ==P"(r= 1,2).
(5.1)

(5.2)
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with similar relations for A" and, consequentially,

(5.3 )

(5.4)

The statistics of a matrix-fibre composite are most likely to be given in terms of the number
density nI (per unit cross-sectional area) and the pair distribution function g(x) of the fibres.
The latter is defined so that the probability density for finding a fibre centered at x, conditional
upon there being a fibre centred at the origin, is n\g(x). The constant All represents the
difference between the area occupied by fibres, conditional upon a fibre covering the origin, and
the corresponding area, calculated unconditionally. It follows, therefore, either by direct
physical reasoning or by manipulation as given in[6], that

where .st1 denotes the cross-sectional area of a fibre, PI = .st1n I and

A= 1+ nI f dx[g(x)-I].

(5.5)

(5.6)

The parameter A gives the difference between the expected number of fibres intersecting any
large area, conditional upon one fibre having specified location and the corresponding number.
calculated unconditionally. Its evaluation causes no special problem. The other parameter, A'\ \.
depends upon ~ and is less simply expressed in terms of g(x) than its three-dimensional
counterpart.

The relations (5.1) also simplify equations (4.8). As already noted in [12], they allow (4.8) to
be given in the form

[(L, - LorI +Ph - P'f =(e),

where

It follows from (5.7) that

{

2 I-i 2
T= ~1 p.[I + (L. - Lo)PT I

~I P,[l +(L, - Lo)PT\L, - Lo),

so that

(5.7)

(5.8)

(5.9)

(5.10)

If Lois chosen so that L, - Lo is either positive or negative definite, then L, as given by (5.10).
is such that i - L is correspondingly definite, where i denotes the exact tensor of overall
moduli. In the case of (transversely) isotropic statistics, P' can be evaluated explicitly and
(5.10) yields the bounds of Hashin[8] and Walpole[9}. A self-consistent estimate for i follows
by assuming that (5.10) yields L = i when Lo is identified with the overall material, so that
Lo= i. The resulting equation

L(i) = i (5.11)
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for i is approximate, because the variational estimate (5.10) is based upon a polarization field
that is unlikely to be exact for any choice of Lo. Self-consistent" prescriptions of this
particular kind have been discussed in(7, 12, 14].

Equations (5.7) also yield an explicit solution for the term 11 - 12 that appears in (5.3), (5.4).
This is

(5.12)

6. A COMPOSITE CONTAINING ALIGNED ELLIPTICAL FIBRES

Here we study the implications of our formulae for a matrix containing a set of identical
fibres, whose elliptical cross-sections have semi-axes of length a, parallel to OXI and b, parallel
to OX2' Both fibres and matrix will be taken as isotropic, and two pair distribution functions
g(x) will be considered, for both of which the composite overall is orthotropic. The simpler of
the two functions g(x) is a two-dimensional version of one that has been considered in[7]: g(x)
is taken to depend upon XI> X2 only in the combination (x/ta2+x2

2tb 2)1/2, so that the composite
could be realised (conceptually) by subjecting a transversely isotropic composite with circular
fibres to an affine transformation. This g(x) will be referred to as having "elliptical symmetry".
The other g(x) is of a type that has been considered by Varadan, Varadan and Pao[15]. g(x) is
taken as "transversely isotropic" and so a function of r = (x,.x,,) 1/2 only, with the restriction
g(x) = 0 when r < R, for some R > 2a, to ensure that the fibres do not overlap.

Evaluation of the constant P' requires an expression for PlI(x,O) in terms of nl and g(x).
This takes the form

PI\(x10) = nI2J1t(x) +nl Jdy Jdy' g(x + y - y'),
D

(6.1)

where D represents the ellipse {y: yl21a2 + yltb 2 < l} and d(x) represents the area of the
intersection of D with an identical ellipse centred at x. The first term on the right side of (6.1)
represents the probability that 0 and x lie in the same ellipse and the second is the probability
that they lie in different ellipses. It follows now that

All =nl Jr(x)JIt(x) dx + nl
2Jrex) dx Jdy Jdy'[g(x + y' - y) -t]. (6.2)

D D

having also used PI =~nh where d =d(O) denotes the area of D.
The function sI(x) has elliptical symmetry and this enables tbe single integral in (6.2) to be

evaluated, using the result (3.14). This is independent of the size of the ellipse and it follows
that, when applied to any function with elliptical symmetry, r behaves like P times a delta
function, with P given by (3.16). The first term on the right side of (6.2) thus reduces to
JltnlP = PIP.

The other term depends upon the function g. The integral over X can be written in tbe
alternative form

Jr(x)[g(x+y'-y)-J]dx=fr'"(x-y'+y)[g(x)-I]dx. (6.3)

Suppose first that g has elliptical symmetry. The vector y'- y lies within an ellipse of semi-axes
2a, 2b and the result (3.14) implies that the contribution to the integral for x outside this ellipse
is zero. Within the ellipse, g{x) =' 0 and the integral therefore takes the value - P, independently
of y, y', so that the integrations over these variables are now accomplished trivially. The result
is therefore

(6.4)
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P'=P. (6.5)

Now consider transversely isotropic g(x). A similar argument shows that the right side of
(6.3) reduces to - Po, the value of P appropriate to a circular disc, given by (3.15). Hence, in this
case,

(6.6)

(6.7)

The tensor P' still depends, of course, upon the choice of comparison medium.
The expression (5.4) for Q can be put in a form in which its relationship to the scattering

cross-section R of a single inclusion is displayed, since

D 11 :: .'J1P\f:.Sx = ~2nlf:.S"}

Ell = .'J1P tf:.M:: .'J1"n 1f:.M.

Thus, (5.4) can be written

(6.8)

where

(6.9)

and

(6.10)

When the dispersion of fibres is dilute, [- L2 and it is natural to take Lo=L 2• Then, R, F
reduce to R, F and, so long as g(x) is such that A.... I, Q reduces to the form that it has to take
if scattering by the fibres is uncorrelated.

7. EXPLICIT FORMULAE FOR SH WAVES

If the tensor L is orthotropic and only the component U3 of the displacement is different
from zero, the only non-trivial parts of the stress-strain relation (J' = Le are

where / =L 131 ), I' = L 232) and eo) = ~U3.a' We write, consequently,

L = (2/, 2/')

and

L-I = 0/21.1/21').

(7.1)

(7.2)

(7.3)

If L is isotropic, with shear modulus IJ., then I = I' = IJ..
The relevant components of the tensors Sx, M" S, M are those with suftixes 0303, 033, 330'

33 respectively. These follow from 6 3), to which only one eigenvector UN contributes (namely,
the unit vector in the 3-direction) and the corresponding wave speed, which we simply call c, is

(7.4)
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in (7.4), 10, 10represent the relevant components of Lo. It follows now, from (3.16), that

so that, using the notation of (7.2),

p_( b a)
- 2mo(amo+ bmo)' 2mO(amo+ bmo) ,

(7.5)

(7.6)

where m02 =10, m02 =10. The tensor Po is obtained from (7.6) by setting a =b.
Expressions for overall moduli now follow from (5.10). Again using the notation of (7.2),

where

i = (2i, 2i'), (7.7)

(7.8)

The factors an a~ that appear in (7.8) depend upon the statistics of the medium. If the
composite has elliptical symmetry,

a, = l![mo(amo + bmo) + (IL, -Io)b],}
a~= l/[m~am 0+ bmo) + (IL, -IO)a]

while if it has transversely isotropic g(x)

(7.9)

a: = 1/[P2m?(am~ + bmo)(m~+ mol + (IL, -I~)[b(m~ + mol - Pl(am~ + bmo)]},} (7.10)
a, = l!{P2mo(amo + bmo)(mo + mol + (IL, -Io)[a(mo + mol - P.(amo + bmo)]}.

Bounds for the components ~ f' of i are obtained by substituting into (7.9) or (7.10) the
values 10 =10= ILl or 10 =10=1L2' Assuming that the fibres are stiffer than the matrix, the former
choice yields upper bounds while the latter yields lower bounds. The expressions (7.9), (7.10)
simplify somewhat when Lo is taken isotropic. Self-consistent estimates, however. require the
comparison material to have moduli 10 = f, 10= f' so that these involve (7.9), (7.10) in the forms
given.

Attenuation of the mean wave in the composite is described by (6.8) which, in turn, requires
the evaluation of as" aM. The relevant components of as, follow from (3.19) as

Thus, with the notation of (7.2),

"S - po (I 1)
a ,- 16momo ~'TiJ .

The only relevant component of aM is aMn. From (3.20),

(7.11)

(7.12)

(7.13)

The term TI- T2 follows from (5.12); the substitutions are routine but lead to long formulae
which are not displayed.
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8. RESULTS AND DISCUSSION

A computer program has been written to evaluate the expressions given in the preceding
section, when the fibres and matrix are both isotropic, with shear moduli /l h /l" respectively. In
addition, certain limiting cases can be simplified analytically; these are summarised in the
Appendix.

It has been remarked earlier that identifying Lo with L,(r = 1 or 2) generates estimates Lfor
the exact moduli [ that are bounds, and that a "self-consistent" estimate is obtained by solving
the equation Lo= i(Lo). Having obtained L, the long-wavelength dispersion relation (4.30)
shows that an SH wave propagates in the direction n = (cos fI, sin fI) with speed

(8.1)

When the fibres have circular cross-section, r= i' and (8.1) is independent of fl. Figure 1
shows plots of c against concentration P I for boron fibres with circular cross-section in an
aluminium matrix. The three curves correspond to the Hashin-Shtrikman lower bound, the
self-consistent estimate and the Hashin-Shtrikman upper bound for f. They are normalized to
the wave speed of the matrix. The values adopted for the moduli and densities were

Figure 2 shows corresponding plots of the normalized cross-section RIea4. These figures
demonstrate the sensitivity of the estimates to the choice of comparison medium. At low
concentrations, the choice Lo= L" is known to produce the exact result and we would speculate
that the self-consistent choice Lo= i is likely to be the most satisfactory over a range of
concentrations. The attenuation term Q, as given by (6.8), also requires knowledge of A. This
depends upon g(x). Plots of A against PI are shown in Fig. 3 for the "welI-stirred" ap­
proximation g(x) liE 1, Ixl > 2a and for the Perkus-Yevick g(x), for which A has been given by
Twersky [16]. The Perkus-Yevick g(x) is not the exact distribution function for a two­
dimensional "hard-sphere" ensemble in statistical mechanics. An improved (though still ap-

Ol..------r------.
·25 P. ·5

I

1.0 It::------r-------,
25 ~ -5

18

LoL,
7·0

L~ L
0

LoL2

104
J5

Fig. I. Fig. 2

Fig. I. Plots of SH wave speed against concentration of fibres for boron fibres of circular cross-section in
an aluminium matrix, normalized to the wave speed of the matrix. The three curves correspond to the

Hashin-Shtrikman upper and lower bounds and the self-consistent estimate.

Fig. 2. The normalized cross-section Rlk 3a4 plotted against concentration of fibres, for the same composite
as in Fig. I. The three estimates correspond to choosing the properties of the comparison material so as to

give the two Hashin-Shtrikman bounds and the self-consistent estimate for the wave speed.
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proximate) g(x) has been given by Rowlinson[l'h Since there is no reason in any case to expect
a composite to conform to these particular "hard-sphere" statistics, the simple Perkus-Yevick
form is adopted for illustration. The main point of int{'rest is that Q is sensitive to g(x). It is
noteworthy in particular, that the well-stirred appro.\ ;rnation predicts that A E; 0 for PI ~ 1/4.
This unphysical behaviour has already been remarkd upon'in[4,6], in the corresponding
three-dimensional problem for which PI = 1/8 is the cntical value. Figure 4 shows plots of the
specific attenuation 2P,ARI(kat against Ph for both functions g(x), with the matrix chosen as
comparison material. Plots of specific attenuation are also shown on this figure for waves
travelling in the direction tb = 0 in a composite containing fibres of elliptical cross-section with
bla = 0.6. They are both for "transversely isotropic" g(x). The one termed "well-stirred" takes
g(x) = 1, IxI~ 2a and the one termed p.Y takes the Perkus-Yevick g(x) appropriate to circular
cylinders of radius a. Corresponding results for this "well-stirred" approximation were given by
Varadan et al. [15], for bla = 0.6,0.8 and 1.0. They employed multiple scattering formalism with
the quasicrystalline approximation. Plots of their results for ka = 0.5 dip close to zero around
PI = 1/4 but then they ri~e again. This is presumably an effect of retaining high-order terms in
the multipole expansiw1 for the field scattered by any fibre. The present result, however,
coincides with that of Varadan et al. [15] in the limit ka -+ 0 and demonstrates that the
well-stirred approximation is invalid except at low concentrations.

Figure 5 shows estimates of the wave speed c, as given by (8.1), plotted against 9, for fibres
with aspect ratio b/a = 0.6, at volume concentration PI =0.3, with g(x) transversely isotropic.

o'-------...----...,

·8

'~

P. ·5
I

b

25

·4

·25
oL-- --+ -,

Hl

Fig. 3. Fig. 4.

1·6

·5·25
'·0~-------,~------.

nn,b2

Fig. 5.

Fig. 3. Plots of the structure factor It. against concentration of fibres. for a matrix containing circular
cylindrical fibres. for "well-stirred" and for Percus-Yevick statistics.

Fig. 4. Plots of the specific attenuation 2P1ARJ(ka)4 against P.. for the same composite as in Fig. I. with
the matrix chosen as comparison material, and for a composite containing fibres of elliptical cross-section.
with bla =0.6 and the waves travelling in the direction /I =0. (a) bla = I, Percus-Yevic statistics, (b)
bla = I, "well-stirred" statistics. (c) bla = 0.6, Percus-Yevick statistics. (d) bla = 0.6. "well-stirred" statis-

tics.

Fig. 5. Estimates of the wave speed c. plotted against /I, for a BIAI composite with bla = 0.6 and
concentration PI = 0.3. g(x) is taken transversely isotropic. as in[I7].
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SH waves at any orientation were studied in this type of composite by Varadan and
Varadan[I7]. We have checked that their estimate for c agrees .with ours when Lo "" L2, for the
case () =O. The present derivation demonstrates that this estimate is, in fact, a lower bound. It
has the simple analytic structure given by (S.lO) but it is not what might be termed a classical
Hashin-Shtrikman bound because of its explicit allowance for two~point statistics. We also
have, of course, an upper bound and a self~consistent estimate, which are new.

Finally, Figs. 6-8 show some results for cracks and rigid plates. Figure 6 shows estimates of
c against 7I"n 1b

2
, for cracks with ():::: 0 and for rigid plates with 6 =71"/2. The corresponding

estimates of R are shown in Fig. 7 for cracks and Fig. 8 for rigid ribbons. For these extreme
cases, only the choices Lo=L 2, i are possible, so that only one bound, and a self-consistent
estimate, are displayed, for each of the two forms chosen for g(x).

2

d

1-5

1·0

0·5

rigid inclusions, 9=0

cracks. 9 t %

c
b

a

OL------.----......----.....-;:-----.
0·4 It n,b2 0·8

Fig. 6. The wave speed c, plotted against 'lTn1b 1
, for waves propagating normally to a set of aligned cracks,

and for waves propagating parallel to a set of aligned rigid plates. (a) Lo =Ll' elliptical symmetry, (b)
self-consistent. elliptical symmetry, (c) Lo = L2' transversely isotropic g(x). (d) self-consistent. transversely

isotropic g(x).

1-5

Hl

c

g
a

o (}4 nn
1
b2 0·8

Fig. 7. Estimates of the normalized cross-section RlkJb4 for waves propagating normally to a set of aligned
cracks. Curves are labelled as for Fig. 6.
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4

3

2

d

c

b

~!::::::::::::::=----------a

o 0·8

(AI)

Fig. 8. Estimates of the normalized cross-section Rfeb' for waves propagating parallel to a set of aligned
rigid plates. Curves are labelled as for Fig. 6.
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APPENDIX
This Appendix lists results which are obtained as limiting cases from the general formulae of Section ~.
First, if the fibres have circular cross-section (and fibres and matrix are isotropic), the two modeh discussed above

coincide, so that P =Po. The elastic response of the composite is transversely isotropic so that i = i'. The comparison
material is chosen to be transversely isotropic. with 10= 10 = 1£0 and then (7.8), (7.9) give.

i = #£1#£2 +(Pili· I+P2p:2!p.o
PI#£2 +P2#£1 +p.o .

The Hash~n-Shtrikman bounds for the exact shear modulus i follow by choosing p.o = 11-1 or 11-2 and the self-consistent
estimate (/ ='0) is obtained as the solution of

/2 - (PI - PV(/Ll- #£2)i - #£111-2 = o.
The Hashin-Shtrikman bounds were derived in[8, 9) and the self-consistent eqn (A2) was given in[9J.

(A2)
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The "cross-section" R for this composite reduces to the form

(A3)

where k1 =pwll~. The cross-section R of a single fibre is obtained from (A3) by setting !'-o = Ii =!'-1 and Pl = I.

(A4)

The other limiting case that we consider is that of a composite containing plate-like inclusions at fixed number dens it;
n,. with alb -+0. The volume concentration P, =1I'abn, correspondingly tends to zero and the inclusions have no effect.
unless their properties are extreme. Thus. we consider a matrix weakened by aligned cracks (!,-, '" p, = 0) and a composite
containing aligned rigid platelets (l'-"l'-l-+ x ). by first making these substitutions and then taking the limit alb ... 0. The
composites so produced have orthotropic elastic properties. which depend upon the form chosen for the function gLt).
Before listing the results. we remark that. for a wave with normal n =(cos 8. sin 8). the two non·trivial components of the
mean strain (e) are

(e) = - ~ ik(cos 8. sin 8)

and the cross-section Rdecomposes into the form

(A5)

(A61

These terms come, respectively. from the (13) and (23) components in (1,-11)A5.,(1,-11). the term (11',- 171)AM(tr,- 171)
making no contribution in the limit atb -+ O.

(a) Aligned cracks. "elliptical" symmet"

(A7)

(A8)

Identifying the comparison material with the matrix, so that mo" '" mi/ =!'-2, gives the upper·bound estimate

(A9)

for i. The self-consistent choice (/0 =i, Ib= ,.Ill generates the quadratic equation

(AIO)

where

(Atl)

(b) Aligned cracks, transversely isotropic g(x)
In this case,

• tr
1b'k Jl'-l2/g(mo'" mOl' cos1 8

R = 8momMmom,~mo+ mi,) + 1I'n, b'[l'-l(mO + ml') -Iom:,l)"

The upper-bound estimate for [ is

and the self-consistent equation reduces to

(AI2)

(A13l

(A14)

(AIS)

It is. perhaps, worth noting that (A14) is consistent with the low-frequency dispersion relation for the composite under
consideration. given by Varadan and Varadan [17]. This can be seen by reducing their complicated eqn (13) to the simpler
form

using their notation.



Variational estimates for dispersion and attenuation of waves in random composites-III

(c) Aligned rigid plates, "elliptical" symmetry

R 1T~b'k' (mo) . 1 6=-8- mo Sin .

Setting mol =m,/ =1J.1 produces the lower-bound estimate

and the self-consistent equation, obtained by setting mol = 1J.1. 10= i' is

where

(d) Aligned rigid plates, transversely isotropic g(x)

i =1J.1. I' =1J.1 + 1TnlblmomO(mo+ mo)/(mo+ mOl -1Tft.b2mo].

- 1T 2b'emO(mo+mlisin2 6
R = 8~' , b2 )2.mOlmo+ mo-1Tn. mo

The lower-bound estimate is

and the self-consistent equation is

811

(AI6)

(AI7)

(AI8)

(AI9)

(AW)

(A21)

(A22)

(A23)

(A24)

Cross-sections for a single crack or a single rigid plate follow from the formulae given above by taking ft, = 0 and
10 =10 =1J.1. From (A8) or (AI3). the cross-section of a crack is

(A25)

and. from (A 12) or (A22), that of a rigid plate is

(A26)


